skip to main content


Search for: All records

Creators/Authors contains: "Martens, Hilary R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Geodetic methods can monitor changes in terrestrial water storage (TWS) across large regions in near real‐time. Here, we investigate the effect of assumed Earth structure on TWS estimates derived from Global Navigation Satellite System (GNSS) displacement time series. Through a series of synthetic tests, we systematically explore how the spatial wavelength of water load affects the error of TWS estimates. Large loads (e.g., >1,000 km) are well recovered regardless of the assumed Earth model. For small loads (e.g., <10 km), however, errors can exceed 75% when an incorrect model for the Earth is chosen. As a case study, we consider the sensitivity of seasonal TWS estimates within mountainous watersheds of the western U.S., finding estimates that differ by over 13% for a collection of common global and regional structural models. Errors in the recovered water load generally scale with the total weight of the load; thus, long‐term changes in storage can produce significant uplift (subsidence), enhancing errors. We demonstrate that regions experiencing systematic and large‐scale variations in water storage, such as the Greenland ice sheet, exhibit significant differences in predicted displacement (over 20 mm) depending on the choice of Earth model. Since the discrepancies exceed GNSS observational precision, an appropriate Earth model must be adopted when inverting GNSS observations for mass changes in these regions. Furthermore, regions with large‐scale mass changes that can be quantified using independent data (e.g., altimetry, gravity) present opportunities to use geodetic observations to refine structural properties of seismologically derived models for the Earth's interior structure.

     
    more » « less
    Free, publicly-accessible full text available March 1, 2025
  2. Abstract

    Storage-discharge relationships and dynamic changes in storage connectivity remain key unknowns in understanding and predicting watershed behavior. In this study, we use Global Positioning System measurements of load-induced Earth surface displacement as a proxy for total water storage change in four climatologically diverse mountain watersheds in the western United States. Comparing total water storage estimates with stream-connected storage derived from hydrograph analysis, we find that each of the investigated watersheds exhibits a characteristic seasonal pattern of connection and disconnection between total and stream-connected storage. We investigate how the degree and timing of watershed-scale connectivity is related to the timing of precipitation and seasonal changes in dominant hydrologic processes. Our results show that elastic deformation of the Earth due to water loading is a powerful new tool for elucidating dynamic storage connectivity and watershed discharge response across scales in space and time.

     
    more » « less
  3. Abstract

    We installed a purpose‐built network of co‐located Global Navigation Satellite System (GNSS) stations and meteorological instrumentation to investigate water storage in a high‐mountain watershed along the Idaho‐Montana border. Twelve GNSS stations are distributed across the Selway‐Lochsa watersheds at approximately 30–40 km spacing, filling a critical observational gap between localized point measurements and regional geodetic and satellite data sets. The unique coupling of geodetic and hydrologic observations in this network enables direct comparison between co‐located GNSS measurements of the elastic response of the solid Earth and local changes in measured water storage. This network is specifically designed to address questions of hydrologic storage and movement at the mountain watershed scale. Here, we describe technical details of the network and its deployment; introduce new hydrologic, meteorologic, and geodetic data sets recorded by the network; process and analyze the source data (e.g., time series of daily three‐dimensional GNSS site positions, removal of non‐hydrologic signals); and characterize basic empirical relationships between water storage, water movement, and GNSS‐inferred surface displacement. The network shows preliminary evidence for spatial differences in displacement resulting from a range of snow loads across elevations, but longer and more complete data records are needed to support these initial findings. We also provide examples of additional scientific applications of this network, including estimations of snow depth and snow water equivalent from GNSS multipath reflectometry. Finally, we consider the challenges, limitations, and opportunities of deploying GNSS and weather stations at high elevations with heavy snowpack and offer ideas for technical improvements.

     
    more » « less
  4. Abstract

    Hydrogeodesy, a relatively new field within the earth sciences, is the analysis of the distribution and movement of terrestrial water at Earth's surface using measurements of Earth's shape, orientation, and gravitational field. In this paper, we review the current state of hydrogeodesy with a specific focus on Global Navigation Satellite System (GNSS)/Global Positioning System measurements of hydrologic loading. As water cycles through the hydrosphere, GNSS stations anchored to Earth's crust measure the associated movement of the land surface under the weight of changing hydrologic loads. Recent advances in GNSS‐based hydrogeodesy have led to exciting applications of hydrologic loading and subsequent terrestrial water storage (TWS) estimates. We describe how GNSS position time series respond to climatic drivers, can be used to estimate TWS across temporal scales, and can improve drought characterization. We aim to facilitate hydrologists' use of GNSS‐observed surface deformation as an emerging tool for investigating and quantifying water resources, propose methods to further strengthen collaborative research and exchange between geodesists and hydrologists, and offer ideas about pressing questions in hydrology that GNSS may help to answer.

     
    more » « less
  5. null (Ed.)
  6. Temporal variations of surface masses, such as the hydrosphere and atmosphere of the Earth, load the surfaces of planetary bodies causing temporal variations in deformation. Surface shear forces and gravitational fields also drive ongoing planetary deformation. Characterizing the spatiotemporal patterns of planetary deformation can constrain allowable models for the interior structure of a planetary body as well as for the distribution of surface and body forces. Pertinent applications include hydrology, glaciology, geodynamics, atmospheric science, and climatology. To address the diversity of emerging applications, we introduce a software suite calledLoadDefthat provides a collection of modular functions for modeling planetary deformation within a self‐consistent,Python‐based computational framework. Key features ofLoadDefinclude computation of real‐valued potential, load, and shear Love numbers for self‐gravitating and spherically symmetric planetary models; computation of Love‐number partial derivatives with respect to planetary density and elastic structure; computation of displacement, gravity, tilt, and strain load Green's functions; and computation of three‐component surface displacements induced by surface mass loading. At a most basic level, only a planetary‐structure model and a mass‐load model must be supplied as input toLoadDefto utilize all the main features of the software. The end‐to‐end forward‐modeling capabilities for mass‐loading applications lay the foundation for sensitivity studies and geodetic tomography.LoadDefresults have been validated with Global Navigation Satellite System observations and verified against independent software and published results. As a case study, we useLoadDefto predict the solid Earth's elastic response to ocean tidal loading across the western United States.

     
    more » « less